
1

Warping for image stabilisation
Discussion report

W.Pasman, 25/2/98

Introduction and overview
  With a see-through augmented reality (AR) display the image in the display
should be updated within a few milliseconds after a head movement of the
observer, in order to maintain the virtual objects at a stable location in the visible
world. In other words, the virtual camera has to mimic the head movements of
the observer as close as possible. Allowed lags are in the order of 10 ms (Pasman,
1997; Azuma and Bishop, 1994).
  These constraints are difficult to meet, even with existing very fast polygon
rendering engines. Optimised polygon rendering on high-performance Silicon
Graphics machines still gives total lags of about 30 ms (Jacoby, Adelstein, and
Ellis, 1996; Keran, Smith, Koehler and Mathison, 1994). And additionally, in our
wireless AR display we should also minimise the required computing power.
  To solve these problems, a previously rendered image can be deformed (warped)
to approximate a full rerendering at the new camera position. Appendix A
describes different types of warping. As warping may be done 10-20 times faster
than a complete rerendering (Torborg and Kajiya, 1996), this may resolve the lag
problems. Ideally the warp is controlled by control points in 3D space, in order to
find a warp that brings the image as close as possible to the completely rendered
image. But approximations may be used to avoid costly perspective projections.
  To generate warped images that mimic the effect of a camera rotation, or to
simulate camera rotation (Figure 1), the rendered image has to be shifted and/or
rotated as a whole. To simulate camera translations a more complex
transformation is required: parts in the image depicting more distant objects have
to shift relatively less than objects closer to the camera. Therefore, simulating a
camera translation requires more sophisticated techniques than simulating
camera rotation.

Camera
rotation

Camera

translation

Figure 1. Any camera movement can be
decomposed into a camera rotation and a camera
translation.



2

  The image to be warped can be devided in several depth layers. Each layer can be
warped differently and then merged to form a single image. Such separate parts
are called layers or sprites. This approach allows better simulation of camera
translations (see below).
  Warping seems to have two advantages over standard polygon rendering. First,
a speedup of up to 20 times (Torborg and Kajiya, 1996) may be reached from
warping as compared to polygon rerendering. By using warping several
expensive division operations that are required for perspective projection are
exchanged for cheaper approximating multiplications. Nevertheless, I am curious
about this speedup, as similar approximations may be used for polygon
projection, and texture mapping takes most of the computational resources both
with warping and with polygon rendering (see Appendix B). Second, some
warping types allow us to use optimised scanline-algorithms instead of per-
polygon actions. Such an algorithm allows minimisation of the end-to-end lag by
calculating the next pixel that will be displayed just before it is needed (Figure 2).
Of course this only works if the warping parameters can be calculated fast given
the current viewing position.

Get
Viewpoint

Read from 
Image 

memory

Current 
displaying 
position

Calculate
inverse warping

values

Address
recalculation

Z buffering

Figure 2.  General layout of an address recalculation warping system.

  A warp is only an approximation of a complete rerendering, and it is not clear to
what extend the approximation suffices and what warp type is appropriate. This
report discusses the possible solutions, their consequences and proposes tests that
have to be done to estimate what warping is appropriate for the first prototype
system. First, I will sum up the results from the earlier report (Pasman, 1997)
concerning the requirements of the system. Second, I will discuss the different
ways pictures and (partial) depth information can be represented, and its
consequences. Third, technical aspects and requirements for fast warping are
discussed. Fourth, existing real-time warping systems are reviewed, and their
usefulness for our purposes is discussed. These systems were not designed for
stabilising AR images, and have drawbacks when used for our purposes. The fifth
section discusses ideas for improvement and an overview is presented of the
findings. Finally, a selection is made of the most promising systems that should
be investigated in more detail.

Requirements
  In earlier reports (Pasman, 1997; Pasman & van der Schaaf, 1998) it was suggested
that for AR the angular precision should be below 0.5û.  Furthermore, we want to



3

provide stereoscopic images to the observer. A blocker that can block light from
the environment in order to substitute objects in the real world complete with
virtual objects seems highly desirable. Finally, we expect that lags of 0.5 to 1
second will occur in the connection link between the backbone and the headset.
  As we want an optical merging of virtual-world and real-world images, the total
system lag is an important parameter. In 0.5 to 1 s, the observer can easily make
full 180û turns. Furthermore, if we assume he is walking with 1 to 2 meters per
second, we can expect translations of up to 2 meters. Our stabilisation mechanism
should be able to cope with these lags and displacements.
  Lags may also be avoided by predicting the viewpoint. However, the required
precision and the amount of lag are too high to stabilise AR images. For example,
Azuma and Bishop (1994) found that at a prediction interval of 100 ms the
average error is 0.36 cm and the peak error is 15 cm. Mark, McMillan and Bishop
(1997) indicate that the predicted error grows with the square of the lag, so at 0.5 s
lag we can expect average errors of 9 cm and peak errors of 3.75m.

Picture representation and consequences
  This section discusses the choices that have to be made regarding the
representation of the pictures and their consequences. First, pictures can be planar
or surrounding. Second, complete or partial depth information may be available
to steer the warping process. Third, monoscopic or stereoscopic images may be
available.

Planar versus surrounding image
  The warps described in Appendix A work with planar source images. As such a
planar image always covers less than 180û, required parts of the image will lack
when a camera rotation has to be simulated - e.g. when the observer rotates his
head. We will call lacking image parts in the target image visibility gaps. Figure 3
illustrates an example of a visibility gap. This problem can be solved with
surrounding images. Figure 4 shows three examples of surrounding images.

Calculated
image Calculated

image

Visibility gap

Figure 3. When using planar source images, required parts of the target image may lack (visibility
gap) when simulating camera transformations, especially rotations.



4

(a) (b) (c)
Figure 4. Examples of surrounding images. In (a) several planar images are combined to form a
surrounding cube. In (b) the source image is spherical. In (c) the source image is cylindrical.

  A surrounding cube (Figure 4a) has some advantages. Regan and Pose (1994)
summarise:

  "The surface of a cube was chosen as the encapsulating rendering surface
after considering many possible candidates, as the cube results in a moderately
simple hardware implementation and has fewer aliasing artefacts than most
other surfaces. The cube's greatest advantage however is in its associated
rendering simplicity. The surface of the cube may be rendered to by rendering
to six standard viewport mappings." (Regan and Pose, 1994, p. 156)

However, the system of Regan and Pose can simulate only camera rotations.
When simulating camera translations, the boundaries of the faces may pose
problems to warping. This is because images of objects crossing an edge of the
cube will be split over different faces and warped separately. As the separate warps
may contain different approximation errors, the images may not connect neatly at
the edges. Hirose, Watanabe and Endo (1998) used a large video database with
both cylindrical and cubical surrounding images (this is not in their paper but
they told about it) to allow real-time virtual walkthroughs. They found that
cylindrical modelling was too coarse for warping, and preferred cubical
surrounding images.
  Such boundaries are avoided by using a surrounding sphere (Figure 4b). Using
polar coordinates does not require the polygon renderer to use polar coordinates
too, but instead an image warp can be done to bring an image into its polar
version.
  On the other hand, polar coordinates may also cause problems with warping, as
rotation of sprites around an axis out of the image is not straightforward in polar
coordinates. Furthermore, straight lines in the 3D scene will not be projected to
straight lines in polar space (as was the case when projected to a flat plane). For
example, Figure 5 shows the checkerboard of Figure A3 when placed at a distance
of a quarter of its width from the camera and transformed to polar space. This
will give troubles with the warping, as running through linear space is easier
than running through a curved space (see the discussion on scanline algorithms
under 'real time warping').



5

- 1 - 0.5 0 0.5 1
a (rad)

- 1

- 0.5

0

0.5

1
b 

(r
ad

)

- 0.1 - 0.05 0 0.05 0.1

- 0.1

- 0.05

0

0.05

0.1

a (rad)

b 
(r

ad
)

Figure 5. The checkerboard of Figure A3 put into
polar form.

Figure 6. The centre of the figure is nearly
square. Here the central 30û by 30û is shown

  One way to make rotation easy while still using a polar representation is to
approximate areas on the sphere with a normal flat rectangle. The errors at the
boundaries of the rectangle will be small if the area is small. It can be seen in
Figure 6 that the squares in the centre are nearly rectangular. Figure 7 shows for
various distances from the centre how close the approximation is to perfectly
square. The quality at 0.1 rad (11.5û) is 99.7%. For example, let's assume a display
resolution of 640 pixels spread over 30û. A sprite reaching up to 0.1 rad from the
middle (thus having a width of 23û) will have an error of 0.3% or (0.3% * 23/30 *
320) = less then 1 pixel at the borders.

0 0.1 0.2 0.3

96

97

98

99

100

distance from center (rad)

C
lo

se
ne

ss
 to

 p
er

fe
ct

ly
 s

qu
ar

e 
(%

)

Figure 7. Closeness of the approximation to
perfectly square as a function of the distance
from the centre.

  Cylindrical coordinates (Figure 4c) are also possible (Apple, 1998a) and have the
advantage that the viewing space can be captured easier into a single image than
polar coordinates. However, cylindrical coordinates do not cover the whole
environment. For our purposes inclusion of at least the floor seems important.



6

Partial depth information
  Surrounding images allow perfect simulation of camera rotation. But to
simulate camera translations, depicted objects should shift and scale proportional
to the length of the translation and inverse proportional to their distance to the
viewpoint (Figure 8). Thus, to simulate a camera translation, we need the
distance between the viewpoint and the objects in the picture. This section
discusses the possibilities to include depth information in the images and
problems when insufficient depth information is available.

Translation parallel to object

a

b

T
ra

ns
la

ti
on

 to
w

ar
d

s 
ob

je
ct

a

b

Figure 8a. An observer translation parallel to
objects results in a visual shift of objects that is
inversely proportional to the distance between
the objects and the observer.

Figure 8b. Similarly, an observer translation
towards an object results in visual scaling of the
objects, again inversely proportional to the
distance between the objects and the observer.

  We have a problem with camera translations when using a single image
without depth values (Figure 9). In such a case, a warp can approximate camera
translations only very roughly, assuming some distance between the observer
and the image. For the observer, the virtual scene will look like a picture instead
of giving him the suggestion of space. Consequently, misalignments with objects
in the real world will be unavoidable in the AR situation.



7

Figure 9. with a single image
some distance has to be
assumed to approximate
camera translations

Figure 10a. depth values
assigned to parts of the image.

Figure 10b. Instead of
approximating the scene with
flat images, a polygon structure
may be used.

  A first step to improve warping possibilities is to assign a depth value to parts of
the image (Figure 10). However, this does not completely solve the problems
with camera translations. In this situation, of objects hidden behind other objects
only part of the image is available. When the camera translates new parts of the
hidden objects should become visible. As these new parts are not available in the
old image, this again results in lacking image data: a visibility gap. Figures 11 and
12 illustrates a visibility gap occurring in the museum walk through simulation
of Mann and Cohen-Or (1997).

Figure 11. this approach gives
'visibility gap' problems with
camera translations.

Figure 12. Left: A single image to be warped. Right:  when the
camera translates (here to the right) some parts of the target
image are not visible in the source image. These parts are black
here (From Mann and Cohen-Or, 1997).

  A straightforward way to solve this visibility gap problem is to store extra
information at the depth discontinuities to anticipate observer translations
(Figure 13a). As a translation disoccludes more of close objects than it disoccludes
distant objects, less anticipating image data is required for more distant
occlusions. But the problem with the visibility gap still may occur with extreme
observer translations. A less straightforward way is to use not a single but



8

multiple source images (Figure 13b). Picture information lacking in one image
may be available in other frames.

Image 1 Image 2

Figure 13a. Extra information added to
anticipate translations. For occlusions at further
distances less anticipating data is required.

Figure 13b. A less straightforward (and
redundant) way to store the extra information is
to use multiple source images.

  A more natural approach seems to use a separate image for each object (sprites)
(Figure 14). This allows per-object warping at an appropriate resolution and
refresh rate. Such selective rerendering also allows speedup of the polygon
rendering (eg.,  Shade, Lischinski, Salesin, DeRose and Snyder, 1996) and
straightforward handling of video images that may be placed on an object.
Furthermore, with sprites (partly or semi-) transparent objects can be handled
conveniently.
  In some situations it may be necessary to model the objects even closer than
with a single image. The object may be split into several images, each to be
warped independently (Figure 15). This situation is similar to standard polygon
rendering, both in scene representation and in required computing power (see
Appendix B), but the warping approach may offer better solutions to the lag
problem than standard rendering.

Figure 14. Multiple overlapping pictures
perpendicular to the viewerÕs
line of sight. Occluded parts might be available
in lower resolution.

Figure 15. Multiple pictures for each object,
approximating the objectÕs surface. Closer objects
are more detailed.



9

Stereoscopic images
  The requirement to generate stereoscopic images may easily double the required
processing power, but with some tricks only a fraction of the processing power
may suffice to attain a reasonable stereoscopic pair.
  Combining surrounding images with stereoscopic images may be a problem.
Consider two surrounding images, one for each eye. If we just take the two
surrounding images from the position of the left and right eye of the observer
(Figure 16a) and the observer rotates his head 90û along the vertical axis, the
disparity will be zero (Figure 16b).

Left 
surrounding
image

Right
surrounding
image

Viewpoint and
viewing direction for
left and right eye Viewpoint

and viewing 
direction for
left and right
eye

Figure 16a. Problem with stereo combined with
surrounding images. Assume that centres of
surrounding images correspond to eye position in
some situation.

Figure 16b. If the observer rotates his head
(here 90û), these centres are incorrect.
Consequently, the images have incorrect
disparity.

Musgrave (1992) proposed to make special surrounding images, by making a
surrounding image using a centre of rotation not coinciding with the camera
lenses (Figure 17). This may be easily done with ray tracing systems, but for real
time rendering this approach is not feasible.

Figure 17. The problem shown in Figure 15 may
be attacked by using special surrounding images,
generated by rotating the camera off-axis. Such
images are easy to generate with ray tracers,
but not with polygon renderers.

  Alternatively, the depth information in a normal pair of stereoscopic images can
be used to extract depth information for the warping process. Next, this depth
information might be used to warp the images. However this depth extraction
requires much computation power and leaves us with a representation close to
Figure 9, giving problems with visibility gaps in the warped images.
  A more efficient approach is to have image data and some depth information at
a single viewpoint, and to warp this image to get the image for the other eye. The



10

situation and problems in this case are similar to the general warping problem:
given a view from some eye position and depth information, we want to
generate a view from the other eye position in a cheap and fast way. Shifting just
the sprites of the objects in the image pairs such that their disparity is
approximately right is expected to suffice, as disparity is a fast but not very strong
depth cue. I expect that visibility gaps are highly disturbing for stereoscopy, and
therefore representations like Figure 9 seem less suited.
  Concluding, it seems appropriate generate a stereoscopic pair with the same
warping mechanism as required to for the image stabilisation. As stereoscopy
essentially requires a translation of the camera, the warping system has to be able
to simulate at least horizontal translations without visibility gaps.

Conclusion
  A surrounding image seems essential to cope with observer head rotations
which may be very fast. For stereoscopic images, the system should be able to
simulate horizontal translations without visibility gaps.
  Using the sides of a surrounding cube for a surrounding image may give address
recalculation possibilities that are easy to implement. However, this system
seems less flexible with regard to per-object rendering and less efficient with
image storage. Considering the complications that may arise when generating
stereoscopic images, using sprites in a polar coordinate system seems the
appropriate choice. A brute-force polygon rendering approach may be feasible but
nearly doubles the required rendering power to generate stereoscopic images as
compared to monocular images.

Technical aspects of fast warping
  There are several strategies to implement a warping system. The warping system
may copy each source pixel into the appropriate location in the target image
(forward mapping). Alternatively the warping system may run through the target
image and find for each pixel in the target image its location in the source image
(backward mapping or address recalculation). Of course address recalculation is
only possible if an inverse warping function exists.
  The advantage of the address recalculation system over the forward warping
system is that it can handle any image scaling in a straightforward way. With a
forward warping system upscaling of the image is especially tricky, as source
pixels should be replicated or interpolated. A failure to do so will cause holes in
the target image (Figure 18).



11

Figure 18a. Example of errors caused by forward
warping, when simple 1-1 pixel copying is used.
Image to be warped.

Figure 18b. Warped version of Figure 18a.
Simple pixel copying will cause holes in the
upscaled target image. (From Mark, McMillan
and Bishop, 1997).

  Efficient versions of address recalculation often are scanline algorithms.
Scanline algorithms decompose the 2D warp into a series of 1D warps. This
allows simpler antialiasing schemes and more efficient memory access than
general address recalculation. The scanline algorithms that can be mapped
effectively on hardware usually consist of an iteration of a simple function to
approximate the exact warp. For example, if the pixels are located in memory on
locations base_address+x dy/dx (where dy/dx is given and x runs from the lower
to the highest required value with increments of 1)  then the subsequent pixel
addresses may also be attained by starting with current_address:=base_address
and repeating the loop current_address:=current_address+dy/dx. This saves one
expensive multiplication per pixel (multiplication roughly takes 20 times the
computing power required for addition, eg., Morris, 1994). For perspective warps,
such a linear approximation is not sufficient, but a quadratic function is a good
approximation (see Appendix A) while all multiplications still can be replaced
with additions.
  More complex warps can also be done with scanline algorithms, but they require
several in-between images and an equal number of scanline warps (alternating in
the horizontal and vertical direction). Wolberg (1990) describes these algorithms
in detail. Because this buffer will introduce high lags in the warp, such an
approach is not useful for our purposes.
  If a polygon renderer is available in the headset, this may relax the requirements
for the rest of the warping. We can assume a typical value of 100 ms for rendering
and an additional 100 ms before the next rendering becomes available, e.g. a
maximum lag of 200 ms. In 200 ms, the observer will be able to make rotations of
about 20û (probably 40û, but at such high rotational speeds I expect that he will
not notice errors in the display) and translations of up to 40 cm.
  If the polygon renderer re-renders objects instead of whole scenes, the lag may be
lower for certain objects. The object coming into view will have a longer lag at
the start of this movement than when all rendering power is distributed evenly
over all objects, but once it enters the centre of vision the object will be
rerendered quickly. Therefore per-object rendering can expected to lower the
latency that has to be compensated for by the warping.
  A related problem that can be solved with scanline algorithms is the high
memory bandwidth required for video streams. A standard video image already
requires 25 Hz x 640 x 480 x 3 bytes (per pixel) = 23 Mb/s. Furthermore, twice this
bandwidth (giving a total bandwidth of about 50 Mb/s) seems necessary as the



12

video streams also have to be written into the memory with the same speed. To
reach the full power of a retinal scanning display with brute force, say a
stereoscopic 4000x4000 at 100 Hz, an enormous bandwidth of more than 10 Gb/s is
required. A standard 70 ns RAM has a throughput of 14 Mb/s and clearly is
insufficient. Special RAMs exist such as VRAM, FBRAM, SDRAM and
RAMBUS. VRAM (Foley, van Dam, Feiner & Hughes, 1987) and FBRAM
(Deering, Schlapp & Lavelle, 1994) were designed especially for video systems.
FBRAM is optimized as z-buffer and has a bandwidth of 400 Mb/s. SDRAM
promises to reach peak rates of 528 Mb/s (Hitachi, 1998), and RAMBUS chips
allow 600 Mb/s or more when contiguous blocks of about 2K are requested (OKI
Semiconductor, 1998). However, rotation of images requires quite irregular
memory access.
  It is possible to get extremely regular memory reads if the warping process is split
into two stages: the first stage simulates translations while the second stage
simulates rotations. The translation simulation would require only scaling and
translation of sprites, and therefore sprites are accessed always in the same (left-
right, top-down) order. This stage results in a single image with only the closest
visible pixels. The subsequent rotation stage only has to rotate this single image,
thus avoiding the highly irregular memory access of the direct warping approach.
However, this two-stage approach requires a full frame buffer between the first
and second stage, which requires memory to store a full frame, and worse, will
give lag times of a full frame.

Existing warping systems
This section discusses the work that already has been done on real-time image
warping, and what solutions might suffice for our purposes.

Translation-only hardware
  A system that might be adapted for warping purposes is the MPEG
(de)compression system. For MPEG (de)compression, special purpose hardware
capable of real-time translation of parts of images is available. Therefore, the
image is cut into blocks of 8x8 or 16x16 pixels. A few frames are compressed as a
stand-alone image (I-frames) in a JPEG-like manner. Other frames are compressed
by using image parts from earlier I-frames and correcting data (P-frames). Most
frames are compressed using image parts both from the preceding frames (up to
the latest I- or P-frame) and future P-frames (B-frames). Figure 19 shows the
compression dependencies. Because the displacement of reused blocks depends
on the motion of the objects in the scene, the displacement vectors of reused
image blocks are called motion vectors. These motion vectors might also be used
for warping of the image. Using the B-frames of the MPEG system would cause
unacceptable delays, but B-frames need not be used. But then, it still remains
unclear whether full frames are being buffered.



13

I B B B P
. . . .

Figure 19. Compression dependencies in MPEG. See text.

  In high definition television (HDTV), a coding scheme similar to MPEG is used.
The objects and motion vectors are transmitted separately. At the receiver site,
the motion of objects is interpolated from the motion vectors as long as no new
motion vector is received.
  MPEG is also the basis for another high-quality television system: HD-MAC. HD-
MAC has a 100 Hz refresh rate, but not all parts of the image are refreshed with
100 Hz. Displacement of image parts based on the motion vectors is used to
interpolate images. In contrast with HDTV, the object determination and the
motion estimation are both done at in the receiver (Fernando, Parker & Rogers,
1990).
  Special hardware exists both for the determination of the objects and motion
vectors  (Harrand, Mougeat & Perron, 1992) and for motion interpolation
(Fernando, Parker & Rogers, 1990). The determination of objects and motion
vectors from video frames seems less interesting for our project, as more
sophisticated motion estimation is possible because the 3D object motion is
known.
 A problem with these MPEG-like systems is that it works with flat images,
usually exactly the area to be displayed, which causes visibility gap problems as
described in Figure 3 and 10. Furthermore, the absence of scaling possibilities can
not be tolerated to simulate camera translations of up to 2 meters.

Rotation-only hardware
    A first system that can do mesh warps is the system proposed by Wolberg
(1990). His system consists of a two-pass warp (Figure 20) where a single image can
be warped arbitrarily in real time, including fold-overs. The warp is defined by
placing a grid over the image and indicating where these grid points should be
warped to (see Figure A8). In the first pass, the image is warped only vertically
(Figure 20a). In the second pass, the warp is completed by doing a horizontal warp
of the half-warped intermediate image (Figure 20b). For some parts in the image
the horizontal warp should be done in the first pass to maintain the image
quality.



14

Figure 20a. In the two-pass system of Wolberg
(1990), the image is first warped vertically.

Figure 20b. In the second pass, the horizontal
component of the warp is done.

  Another system, a chip from Logic Devices Incorporated, has similar properties
although it implements a second-order warp instead of a mesh warp. For our
purposes these systems have a number of drawbacks. First, they cannot create the
visibility gap that should be formed at depth discontinuities; instead they stretch
that area in the image as if it were a single plane. Furthermore, they work with
single flat images and therefore suffer from large visibility gap problems at the
sides of the image (Figure 3). Finally, Wolbergs system is a two pass system that
requires the first part to be finished before the second part can be initiated, which
will result in long lags. Concluding, as such these systems are not useful for our
purposes.

  Another real-time system that can simulate camera rotations was build by Regan
and Pose (1994). Their system is designed to handle surrounding images. They
chose to map the surrounding image on a cube (see citation in the section 'Picture
representation and consequences'). Figure 21a shows an unfolded cube, and
Figure 21b shows an arbitrary view generated by their hardware.

Figure 21a. Unfolded cube holding the
surrounding image of a room.

Figure 21b. An arbitrary view generated with
the hardware of Regan and Pose (1994) from
Figure 21a.

  Their system works by address recalculation (Figure 22). The pixels are calculated
in scan line order. Given the pixel's screen coordinates, the direction of the light
ray through that pixel is looked up in a lens lookup table, and corrected for the
viewing direction of the observer. The memory location for that light direction is
calculated. The display memory consists of 6 layers having a similar address, so



15

that each address results in 6 overlaying pixels. Finally, the non-transparent pixel
that is closest to the observer is selected and displayed.
  Each memory layer contains renderings of a fraction of the objects in the virtual
world. Each object is put into a layer that fits best its rerendering requirements, for
example fast moving objects should be rerendered more often than static objects
far away. The first memory layer is rerendered with 60 Hz, the second with 30 Hz,
etc. down to the sixth layer with 1.875 Hz. This is called 'priority rendering'.

Wide angle
lens lookup
table

PixelÕs
screen
location

Matrix
multiplier

User head
orientation

Memory
location
conversion

Rendering
engines

Image com-
position, 
antialiasing

Display
memory

Figure 22. The address recalculation pipeline of Regan and Pose (1994).

  If simulation of camera rotation alone would suffice for our project, this system
would be a good choice, as it allows efficient use of polygon rendering in the
headset. Close objects can be rerendered at a 60 Hz rate, giving minimal lags of at
least 8 ms. This might be sufficient to simulate translation also, but it is dubious
whether the minimal lag can be reached with a real polygon renderer. Another
drawback is that a full view of the environment is stored for warping. This is
essential for immersive VR, but is suboptimal for AR. Translation can be added
in the warping system, but to avoid problems at the boundaries of each side of the
cube the warp has to approximate the rules of perspective very close. Mark,
McMillan and Bishop (1997) built such a system, and is discussed below.

Combined rotation and translation hardware
  A system allowing both simulation of camera rotation and translation comes
from Mann and Cohen-Or (1997). Their system is designed to work with a fast
polygon renderer connected with a low bandwidth channel to the viewing
system. The warping is being done on single images, as shown in Figure 12.
  To resolve the resulting visibility gap problem (Figure 23a), Mann and Cohen-Or
chose to extrapolate the foreground image instead of the background image
(Figure 23b), resulting in objects that 'grow' into the visibility gap until correcting
data is received.



16

Figure 23a. See Figure 12 for the reference view.
This figure again shows the warped image with
the visibility gap.

Figure 23b. The visibility gap is filled with an
extrapolated foreground image (from Mann and
Cohen-Or, 1997).

  In their system Mann and Cohen-Or regularly correct the accumulating warping
errors, by doing the same warp on the polygon renderer and calculating the
difference image with the fully rerendered image. This difference image is sent to
the warping system to correct the warped image.
  Judged from a video impression, the visibility gaps are quite disturbing. The eye
is attracted to the growing and suddenly shrinking sides of objects. Furthermore,
it is not clear what performance can be reached with this system. Finally, the
system does much redundant work, as warps are performed in duplicate next to a
complete polygon rendering. Concluding, the system seems less suited for image
stabilisation in its present form.

  A second system potentially capable of simulating both camera rotation and
translation is the system of Mark, McMillan and Bishop (1997). Their system
(Figure 24) generates warps two source images with partial depth information as
in Figure 13b, by taking each image part only 1 pixel in size. Basically, the warpers
in their system warp pixels based on their individual z-values, allowing for a
warp that follows the rules of perspective projection. The two warped images are
mixed in order to fill visibility gaps in one of the two images. The two source
images are taken at the recent position and at an estimated future position of the
observer. This way, the redundant information (as the two images usually will be
nearly the same) is lowered provided that the observer actually reaches the
predicted position.
   This system suffers from 3 types of visibility gap problems. First, representing
the scene as in Figure 13 implies in this case that visibility gaps may occur
between each two pixels. Second, at real depth discontinuities image information
may still be lacking. Third, the plain system warps flat images, and thus is prone
to visibility gaps as shown in Figure 3.
   To handle the first problem, Mark, McMillan and Bishop propose to use
heuristics to find out whether adjacent pixels are from the same surface or not,
They propose to compare the normal vectors at each two pixel's position. To
handle the second problem, remaining visibility gaps are filled with an
extrapolated background color. They claim that there will remain little visibility
gaps, as long as observer stays on the line between the last reference image and
the predicted future reference image.



17

Model

Std. polygon 
renderer 5 
frames/s Last

reference image

Future reference
image

Swap buffer
Warper #1
60 frames/s

Warper #2
60 frames/s

Image
merge

and
anti-

aliasing

To Display

Position and orientation
Predict future 

location

Figure 24. Conceptual diagram of the system of Mark, McMillan and Bishop (1997). For each layer
on each side of the surrounding cube one such system is required. See text.

  To handle the third problem, they suggest that the system can be used to warp
four sides of a cube. It is not clear whether this option is standard for their system
or only a proposal. But it suggests a combination of this warping system with a
surrounding cube-system such as Regan and Pose (Figure 21). This is feasible, as
the system of Mark, McMillan and Bishop gives warps that follow the rules of
perspective exactly. Finally, it seems feasible to implement the system efficiently
in hardware.
  For our purposes, this system would allow for a nice upgrade path: start with the
system of Regan and Pose and upgrade it with warping facilities in a later stage to
allow for simulation of translation. Another nice feature is that this warp
perfectly follows the rules of perspective, allowing exact alignment of virtual and
real objects.
  However, there are some drawbacks of this approach. First, double images with
per-pixel z-data and per-pixel normal vectors are buffered. These images contain
much redundant information. Second, two real-time warpers are required to
generate a single image. Third, for a surrounding image six of these systems are
required to warp each side of the cube, and additional hardware to build one final
image from these six warped images: 6 sides x 2 positions x 6-fold storage per
image (image + z-data + normal vector per pixel)=equivalent of 72 full-sized
images. Combined, these three extra steps drastically increase the required
hardware. Fourth, Mark, McMillan and Bishop are not clear about how the
system would efficiently handle forward-backward translations (this seems to
require a some devide instructions) and whether 6 full image buffers are required
when the system is used to warp 6 sides of a cube (which might give a full frame
delay). Finally, the system will not work when lags come above 200 ms (the
prediction errors will be too high), which seems too conservative in our case.
Concluding, this solution may work but is expensive.

  Another system that allows both simulation of camera rotation and camera
translation is the Talisman system (Lengyel and Snyder, 1997). It is not clear
whether working prototype hardware exists for this system, but we can be sure
that the hardware is complex as Samsung failed to build an essential piece of
hardware (Vitaliano, 1997).
  The principle of Talisman is that each object is rendered into a separate picture
(sprite). The sprites can have transparent parts, so that each object can be fit into a



18

rectangular image. The hardware can warp each sprite independently with an
affine warp in real time. The idea is that each object can be refreshed with an
appropriate update rate, thus resulting in more efficient use of the polygon
renderer. The sprites are then superimposed to form the image. The system
claims to work in a 1024x768 pixels x24 bits resolution at 75 Hz, and requires a
total bandwidth of 1.2 Gb/s to memory (Microsoft, 1996).
  Figure 25 shows an overview of the Talisman hardware. The Polygon object
processor renders separate objects from polygons into flat images (with a typical
size of 128x128 pixels). Furthermore, these objects are not rendered to a single
image but to chunks of 32x32 pixels. The resulting image chunks are compressed
and put into the fast RAM. Thus, the polygon object processor is a traditional
polygon renderer extended with compression hardware.
  The image layer compositor reads the resulting images and performs real-time
affine warping on each of them. Finally, the compositing buffer maps the
resulting images for each object into a single output image. To reach the required
memory bandwidth, all images (texture and rendered objects) are cut into 32x32
pixel chunks and compressed and decompressed in real-time (Microsoft, 1997).

Polygon
object
processor

Image
layer
compositor

Compo-
siting
buffer

2x RAMBUS

Figure 25. Overview of the Talisman hardware. See text.

  The interesting part for us is the Image layer compositor. Torborg and Kajiya
state that affine transformations can be done 10-20 times faster than polygon
rendering.  A buffer of 32 scanlines is required (giving a lag of 32/768 x (1/75) »0.5
ms). They are vague about the precise way the layering is implemented. Some
address recalculation address mechanism might be used, but in that case smart
caching mechanisms would be required to reach the required memory
bandwidth. I estimate that a cache of 512K is required in order to reach the desired
bandwidth.
  A drawback of the Talisman system is that the field being warped essentially is
flat. Therefore, the system can only partially simulate camera rotations, and it
will suffer from visibility gap problems. Therefore, this design would need
modification to be useful for image stabilisation.

  A last system that can potentially simulate camera rotation and translation is the
Quicktime VR system (Apple, 1998b). The Quicktime system as a whole is a
collection of a large number of components that integrate audio, MPEG, normal
and digital video, static pictures, animations, surrounding pictures, sprites, text,
3D objects, time codes etc., which may in itself be interesting for our project.
However I quote the Quicktime system here for its surrounding-image
capabilities (Apple, 1998a). This system uses a surrounding cylinder (Figure 4c).



19

Figure 26 shows an unfolded cylindrical representation of an environment. As
indicated above, a cylinder does not cover the total environment; the bottom and
top of the cylinder are omitted and rotations upwards and downwards are
supported only partially. The latest version of the Quicktime system also supports
sprites, and therefore might also be used to simulate camera translation.
However, these sprites cannot be rotated, and therefore only partial rotation
simulation is possible. As far as I know no special hardware exists to accelerate
the display of surrounding Quicktime images, and software implementations
reach refresh rates of about 5 frames per second (full-screen).

Figure 26. Surrounding image as used by the Quicktime VR system (Apple, 1998a).

Ideas for improvement
  As they are, the discussed systems have drawbacks. The warping chip of Logic
Devices Incorporated and the system of Wolberg can not handle surrounding
images and thus are unable to simulate camera rotation. To simulate camera
rotation the system of Regan and Pose (Figure 21) can be used, but simulation of
camera translation is expensive in terms of processing power. The other systems
allow only partial simulation of camera rotation, and simulation of rotation is
essential for our purposes.
  There are several ways in which the existing systems discussed above can be
adapted to suit our purposes. I will discuss some of the possibilities below.

Adapting rotation-only hardware
  A possibility is to upgrade the system of Regan and Pose. One way to add
capabilities to simulate camera translation is the system of Mark, McMillan and
Bishop (1997). But as discussed, this solution seems expensive. Another
alternative may be to keep images of each object in a separate memory, and to
copy these images into the warping memory when needed. This may be
advantageous because this eliminates the need for 6 separate layers, saving
hardware and power usage. But the problem with this warp stays the required
precision of the warp to avoid glitches around the edges of the cube. Another
disadvantage with this alternative solution is that it is not trivial to remove and
replace an image once rendered into display memory. This problem is appearing
similarly in graphical user interfaces such as X-windows (MIT?) and Finder
(Apple, 1993).



20

Adapting Quicktime VR
  Another solution is based on Quicktime VR with sprites. I assume that
Quicktime VR uses sprites in polar form, but I did not yet find information about
this. It is not clear whether useful warping exists for polar images (see above,
Planar versus surrounding image). It seems appropriate to approximate the polar
images with small rectangular images and use conventional warping.
  This system may be implemented efficiently in hardware, but it will be of
Talisman-like complexity. It requires a kind of address recalculation hardware
and image composer. For each of the sprites, a warp can be calculated from the
displacement of that sprite relative to the camera position. One approach is to
calculate the required warp from the positions of certain points in the source
images and the corresponding positions in 3D space. Another approach is to do
only translation and scaling of the images to simulate camera translations, and to
rotate the scene as a whole to simulate camera rotations.
  A problem that needs to be solved in this system is the required bandwidth to
memory. For each overlapping sprite the required bandwidth increases, and there
may be too little time to wait for the front most sprite being fetched from memory
and decide then whether a more distant sprite has to be fetched. As with
Talisman, data prefetching may be required to prevent stalling of the
rendering/warping pipeline. Instead of data prefetching, it seems possible and
more straightforward to queue memory access instructions.
  It may be a good idea to have fast access to low-resolution images of each sprite.
Such low-resolution sprites may be used if the bandwidth to memory at some
time is not sufficient to get a full resolution image. It may be also feasible to
render the image at full resolution only at the place where the observer is looking
at. Finally, when multiple sprites overlap, the low-resolution sprites may be used
to estimate which sprites are really needed. With AR this there will be little
overlap, probably only in 30% of the display given the factor of 1.7 for VR
(Torborg & Kajiya, 1996), so this optimisation is not urgent.
  A third way of reducing memory bandwidth is to compress the data before being
put into memory, and to decompress it when needed. This approach also reduces
the amount of memory required, and seems especially useful for image intensive
operations such as VR. The feasibility depends on the availability of fast
(hardware?) extraction of random pixels from a compressed image.
  Figure 27 sketches a hardware layout that may do this warping. This layout
calculates new warping parameters for each scan line. Probably this layout has to
be extended with some caches. First, the warping parameters for each sprite are
calculated given some characteristic points in the pictures and their
corresponding spatial position, and the viewpoint and orientation of the
observer. These parameters are fed to the machinery that calculates memory
addresses containing the pixels needed for the warp. The address calculation may
also perform lens distortion compensation. These source and destination
addresses are written into a buffer. This buffer is needed because the sprite
memory will take some time to read from. The sprite cache manager reads the
source and destination addresses, checks whether they are in cache, and copies
data to the pixel z-buffer. The pixel z-buffer selects the colour of the closest visible
pixel. If data is not available it should be fetched from sprite image memory.
Furthermore, the manager should manage the memory use in the cache. Of
course the memory transfer manager should try to keep the sprite cache busy



21

given the data in the buffer, so that waiting for the main sprite memory is
avoided. Once a line is completed, the line z buffer is swapped so that the next
line can be transferred to the display. If the memory access times are extremely
fluctuating more than two buffered lines may be required.

Characteristic 
points in picts 
and objects

Calculate
warp paramÕs

Viewpoint and 
orientation of 
observer

Address
calculation

Tobe fetched 
and written
addresses list

sprite cache 
manager

Sprite image 
memory

Get pixels for 
display

To display

sync signals
from display

Sprite image 
cache

single line
z buffer

single line
z buffer

Swap buffer

Figure 27. Possible warping set-up. See text. This set-up might be improved with compression, for
example between the sprite image cache and the main sprite memory.

  A more sophisticated set-up could, for example, use the low-resolution sprite
data of the closest sprite to estimate which parts of more distant sprites is
required.

Adapting Talisman
  The Talisman system may be used for each of 6 planes of a surrounding cube to
come to a surrounding view. However will cause irregularities at the edges of the
planes, as Talisman only approximates a perspective projection. Using a polar
representation will results in a design similar to the adapted Quicktime-VR
above.

Brute force approach
  It may be possible to take the approach of Figure 15 with standard rendering
hardware, which requires brute force to render all the polygons with high refresh
rates. With standard rendering hardware the display can usually be rendered in
parts, for example the lower half of the display. When the number of overlapping
parts to be rendered is not too high, this approach may be fast enough for our
purposes. As shown in several games, such as Doom and Tomb Raider, the
overlap in moderately complex scenes can be made very low, as a standard Intel-
processor is fast enough to do full-screen polygon rendering of such scenes with a



22

refresh rate of about 10 Hz. From estimations done for the Talisman system
(Torborg & Kajiya, 1996), an average overlap of 1.7 for realistic immersive VR
scenes can be reached. As AR scenes are much less complex this approach may be
realistic. However it will be hard to reach the required lag times of 10 ms, as
Olano, Cohen, Mine and Bishop (1995) tried a similar approach and got lags of 17
ms with their 'Slats' system.
  It may be advantageous here to have hardware to do the matrix multiplications
and clipping too, as this may become a bottleneck in this scenario. It is unclear
whether and to what extent clipping can be done in hardware, and to what extent
the need for clipping can be avoided.

Overview
  In the previous sections I discussed the possibilities to stabilise the image in an
AR display. Table 1 gives an overview of the strong and weak aspects of the
discussed systems. Note that the most promising systems, brute force polygon
rendering and an adapted Quicktime VR system, do not yet exist.

Table 1. Overview of strong and weak aspects of discussed systems. +=system can potentially handle
this; ±=system can handle this partially; -=system can not handle this; NR=not relevant.

simul. of
cam.
rotation

simul. of
cam.
translation

visibility
gap

lag <10ms
possible

Working
prototype
hardware

Chip from Logic
Devices

- - NR +? Yes

Surrounding Cube
(Regan & Pose)

+ - NR + Yes

Surrounding Cube
(Mark, McMillan,
Bishop)

+ + ± +? No

Quicktime VR + ± + + No
MPEG - ± - ±? Yes
Wolberg's
algorithm

- ± - - No

Talisman - + + + No
Brute force
polygon rendering

+ + + ±? Yes

Adapted
Quicktime VR

+ + + + No

Proposal
  As discussed, both camera rotations and camera translations have to be
simulated in order to cope with the expected lags in the polygon rendering
system. A system capable of simulating translations can simulate rotations
partially, and the rotations it can not simulate may prove perceptually less
urgent.



23

  Another approach totally eliminating the need for real-time warping is the
brute-force approach. What is needed to make this variant work is fast rendering
hardware capable of rendering only part of the display in a fraction of the time it
would take to render the entire display.

  To estimate which technique is appropriate for our purposes, I propose to
investigate the usefulness of three systems in more detail: the standard
Quicktime VR with sprites, the adapted Quicktime VR approach with sprites
warped with quadratic warping, and brute force polygon rendering.

  To investigate the first two systems, I propose to make a video giving an visual
impression of the performance of such systems. This video should superimpose
warped images on real video images to give images comparable to what might be
seen through an AR display. The video images should contain realistic
movements and the warps should be based on these movements.
  For the brute force system the question is not whether the quality of the images
will be acceptable but rather whether a standard rendering system can be adapted
in such a way that it fulfils our technical requirements. Low-level changes in the
(complex) rendering pipelines is required to do this, and maybe highly system
dependent. This approach will require extensive investigation of polygon
rendering systems.

References
Apple (1993). Inside Macintosh: Macintosh Toolbox Essentials, Chapter 7 -
Finder Interface. Addison-Wesley. Available Internet:
http://devworld.apple.com/ngs/lpp/adrpub/docs/dev/techsupport/insidemac/
Toolbox/Toolbox-443.html.
Apple (1998a). Quicktime 3.0 preview: Programming with Quicktime VR 2.1.
Panoramas. Available Internet:
http://devworld.apple.com/techinfo/techdocs/multimedia/qtdevdocs/VR/QT
VRMgr.5.htm#pgfld=5564.
Apple (1998b). Quicktime 3.0 Fact Sheet. Available Internet:
http://www.apple.com/quicktime/info/qt30/specsheet/qt3fact.html.
Azuma, R. and G. Bishop (1994). Improving static and dynamic registration in
an optical see-through hmd. Proceedings SIGGRAPH '94, 197-204.
Deering, M. F., Schlapp, S. A., & Lavelle, M. G. (1994). FBRAM: A new form of
memory optimized for 3D graphics. Proceedings of the SIGGRAPH'94, 167-174.
Fernando, G. M. X., Parker, D. W., & Rogers, P. T. (1990). Motion compensated
display field rate conversion of bandwidth compressed HD-MAC Pictures. In L.
Chiariglione (Ed.), Signal Processing of HDTV, II. Boston, MA: Elsevier Science
Publishers B. V.
Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J. F. (2nd edition, 1987).
Computer graphics: Principles & Practice. Reading, MA: Addison-Wesley.
Harrand, M., Mougeat, P., & Perron, C. (1992). A predictor IC for TV and HDTV
codecs using motion compensation. In H. Yasuda & L. Chiariglione (Eds.),
Signal processing of HDTV, III. Boston, MA: Elsevier Science Publishers B.V.
Hirose, M., Watanabe, S., & Endo, T. (1998). Generation of wide-range virtual
spaces using photographic images. Proceedings of the VRAIS (March 14-18,
Atlanta, Georgia), IEEE Computer Society, 234-241.



24

Hitachi (1998). HB526C264EN-10IN, HB526C464EN-10IN: 1,048,576-word x 64-bit
x 2-bank synchronous dynamic RAM module. Available Internet:
http://www.halsp.hitachi.com/tech_prod/m_memory/m_modules/6_x64/m
m6td059d1/html/mm6h8.htm#32.
Jacoby, R. H., Adelstein, B. D., & Ellis, S. R. (1996). Improved temporal response
in virtual environments through system hardware and software
reorganization. Proceedings of the SPIE (28 January-2 February 1996, San Jose,
CA), 2653, 271-284. Partly available Internet:
http://duchamp.arc.nasa.gov/research/latency.html.
Keran, C. M., Smith, T. J., Koehler, E. J., & Mathison, P. K. (1994). Behavioral
control characteristics of performance under feedback delay.  Proceedings of the
human factors and ergonomics society 38th annual meeting, 1140-1144.
Lengyel, J., & Snyder, J. (1997). Rendering with coherent layers. Proceedings of
the SIGGRAPH'97, 233-242.
Mann, Y., & Cohen-Or, D. (1997). Selective pixel transmission for navigating in
remote virtual environments. Eurographics'97, 16 (3), C201-6.
Mark, W. R., McMillan, L., & Bishop, G. (1997). Post-rendering 3D warping.
Proceedings of the 1997 Symposium on Interactive 3D Graphics (Providence, RI,
April 27-30), 7-16. Available Internet:
http://www.cs.unc.edu/~billmark/i3dwww/i3dpaper-web.pdf.
Microsoft, 1996.
Microsoft (1997). Texture and rendering engine compression (TREC). Available
Internet: www.eu.microsoft.com/hwdev/devdes/WHNTREC.HTM.
Musgrave, F. K. (1992). A panoramic virtual screen for ray tracing. In D. Kirk
(Ed.), Graphic gems III. Boston: Academis Press.
OKI Semiconductor (1998). MSM5718B70 18-megabit RDRAM (2M x 9).
Available Internet: www.oki_europe.de/t-sync.htm.
Olano, M., Cohen, J., Mine, M., & Bishop, G. (1995). Combatting rendering
latency. Proceedings of the 1995 symposium on interactive 3D graphics
(Monterey, CA, April 9-12), 19-24 and 204. Available Internet:
www.cs.unc.edu/volano/papers/latency.
Pasman, W., & Schaaf, A. van der (1998). Prototype application. Internal report,
Delft University of Technology, Faculty of Information Systems and
Technology, January.
Pasman, W. (1997). Perceptual requirements and proposals for the UbiCom
augmented reality display. Internal report, Delft University of Technology,
Faculty of Information Systems and Technology, December.
Regan, M., & Pose, R. (1994). Priority rendering with a virtual address
recalculation pipeline. Proceedings of the SIGGRAPH'94 (Orlando, FL, 24-29
July), 155-162.
Shade, Lischinski, Salesin, DeRose and Snyder, 1996
Torborg, J., & Kajiya, J. T. (1996). Talisman: Commodity realtime 3D graphics for
the pc. Computer graphics proceedings. Proceedings of the SIGGRAPH'96, 353-
363. Available Internet:
www.research.microsoft.com/SIGGRAPH96/96/Talisman.
Vitaliano, F. (1998). Intel MMX vs. Microsoft Talisman: Abbott and Costello do
multimedia. Available Internet: www.vxm.com/21R.98.html.
Wolberg, G. (1990). Digital Image warping. IEEE Computer society Press, Los
Alamitos, CA.



25

Appendix A: What is warping

  Warping is a two-dimensional transformation of an image into another image.
The warps I will discuss in this appendix mainly follow Wolberg (1990).
Conventionally, the rectangular source image is described with the parameters u
and v, while the warped target image is described with the parameters x and y
(Figure A1).

u

v

x

y

Figure A1. The square source image usually is described in (u,v) coordinate space, and the warped
image in coordinate space (x,y). (from Wolberg, 1990).

Warping may involve just translation, rotation and scaling of a picture, but in
more advanced kinds of warping parts of the picture may be stretched and others
compressed. Some parts may be even hidden, which is called 'foldover' (see the
second  row of Figure A1).
  Most types of warping are designed for planar images. However for AR purposes
it seems more appropriate to use 'surrounding' images, such as the Quicktime
VR images (Apple, 1998a). The possibilities are discussed under 'Planar versus
surrounding image'. Furthermore, using a single image gives 'visibility gap'
problems when approximating observer displacements. Some depth information
of parts of the image seems needed, and is discussed.
  When digital images are used, interpolation of pixels is required (Figure A2).
This process is called 'resampling'. In this report I will not discuss resampling in
detail, as it would complicate this discussion too much.



26

Source image

In
te

ns
it

y

Needed samples

Resampled image

In
te

ns
it

y

Figure A2. When the image is warped, the pixels needed in the warped image may come from
positions between the pixels in the source image. Also, a pixel in the warped image may be a
weighted average of several pixels in the source image. Such pixel calculation is called resampling.

Warping types
  This section describes the main types of warping. Subsequent paragraphs will
discuss their usefulness and feasibility for AR. Easy warps such as rotation,
translation and scaling need no further explanation. The affine warp, the
perspective warp and the mesh warp will be discussed.

Affine warp
  With affine warps, the image point (u,v) is warped into the warped image (x,y)
by the function

x, y( ) = Au + Bv + TX ,Cu + Dv + TY( )

where A, B, C and D are constants and Tx and Ty are translations. This allows for
rotations, translations and shear (Figure A3).

(a) (b)
Figure A3. Demonstration of affine warps. (a) shows the image to be warped. Affine warps allow for
rotation, translation, shear and combinations of these warps (b).

   An affine warp is defined uniquely (and can be calculated in a straightforward
way) if three points in an image (x1,y1), (x2,y2), (x3,y3) and their corresponding
warped points (u1,v1), (u2,v2) and (u3,v3) are known.



27

Perspective warp
  A perspective warp can be understood as an affine warp followed by a
perspective transformation:

x, y( ) = 1
Qu + Rv + S

Au + Bv + TX ,Cu + Dv + TY( )

  As with the affine warp, A, B, C and D are constants and Tx and Ty are
translations. Q, R and S are the 'depth scaling' constants. This projection can be
understood as follows. In a complete 3D perspective projection, a spatial point
(x,y,z) is projected into image point (x/z,y/z) or written differently (x,y)/z. In the
perspective warp, the z value is reconstructed by Qu+Rv+S, which is possible as
the image is flat. Thus the perspective warp is the 2D equivalent of a perspective
projection of a 3D square projected with the image on it. Figure A4 shows a
typical perspective warp.

Figure A4. A perspective warp of a
checkerboard as  in Figure A3a is equivalent to a
complete perspective projection of the image
placed on a 3D square.

  A perspective warp is uniquely determined when four points in the source
image and their corresponding positions in the destination image are known. As
with the affine warp, the parameters can be calculated in a straightforward way.
  Both with perspective and affine warps, straight lines in the source image stay
straight lines in the warped image. With more advanced warps, such as mesh
warping, this is not the case. With mesh warping, parts of the image can be folded
over other parts. In such cases, some priority has to be given for parts of the
picture.

Bilinear and second-order transformation
The general form of a bilinear transformation (Wolberg, 1990) is of the form

x(u,v) = Bu + Cuv + Ev + F

y(u,v) = Hu + Kuv + Mv + N

where the parameters B, C, E, F, H, K, M and N are user defined. Figure A5. shows
a typical bilinear warp. This form is popular because it avoids the divide
operation required for perspective warps while still allowing to simulate



28

vanishing points. However, it can be seen that with bilinear warps equidistant
points along the u-axis and v-axis remain equidistant in the warped image. For
example, in Figure A5 the blocks in the top of the left row are as high as the
blocks in the bottom of the row, while the higher blocks are further away and
thus should be smaller.

Figure A5. Typical bilinear warp. Figure A6. Typical second-order warp.

Introducing a  u2  and v2  coefficient in the bilinear warp solves this equidistant-
problem. Then we get the second-order warp:

x(u,v) = Au2 + Bu + Cuv + Dv2 + Ev + F

y(u,v) = Gu2 + Hu + Kuv + Lv2 + Mv + N

where parameters A through N of the transform are user-defined. With the
second-order warp in the general case, lines will not be warped into lines (Figure
A6). This can be seen from dy/dx (Equation 1). We can get straight lines by setting
(G,H,K)=Q(A,B,C) where Q is some arbitrary constant (Figure A7). But we may not
need straight lines as we only need an approximation of the full rendering.

 
dy

dx
=

dy

du
×
du

dx
=

2Gu + H + Kv

2Au + B + Cv
(1)

dy

dx
=

C1 + Kv

C2 + Cv
(2)



29

Figure A7. Second-order warp configured such
that lines in the source image are warped into
straight lines in the target image.

Mesh warping
  With mesh warping, a number of control points can be placed in the source
image. These control points may be a regular grid (Figure A8) but also a non-
uniform mesh (Figure A9). Next, the warp is defined as a displacement of the
control points.

Figure A8. Control points in a regular grid. Figure A9. Control points in a non-uniform mesh.



30

Appendix B: cost estimations
 This appendix gives rough estimations of the costs of warping and polygon
rendering in terms of required processing power in the components and the
bandwidth in their connections.
  Figure B1 shows the sprite-based warping system that I proposed above in more
detail. I assumed the following system properties:
¥ Display 640x400 pixels x 24 bits colour @ 100 Hz
¥ 50 sprites, average 50x50 pixels and 4 sprites of 200x200 pixels
¥ image storage ~260K in this scenario sufficient. 1 Mb seems reasonable.
¥ 5% of this (0.3 overlap) for AR, peaks of overlap 3 in some areas
¥ ~2 x 640 = 1300 pixels per line at most
¥ 100 x 400 = 40.000 lines per second = 52 Mpix/s
Furthermore I assumed that the divide operation costs 8 flops (Furthermore I
think that flops are not appropriate to express differences in add, multiply and
divide operations, but for now I will use them).

Note that the cache manager has a busy task. This may be the reason for Talisman
to use prefetching instead of caching.
  In case of a 4000x4000 display instead of 640x400 display many values are
increased 60 times. This means peaks of 3 Gpix/s and averages of 300 MPix/s and
a sprite memory of 16 Mb. At this moment this required bandwidth seems not
feasible.

For the brute-force approach using a standard polygon renderer (Figure B2) I
assumed similar system properties as for Figure B1:
¥ Display 640x400 pixels x 24 bits colour @ 100 Hz
¥ rendering the display in 3 blocks of 140 lines gives 3.33 ms lag
¥ 200 polygons and 300 vertices.
¥ 5% of this (0.3 overlap) for AR, peaks of overlap 3 in some areas

  For both approaches, the main processing power and throughput is needed for
the texture address generation and lookup. The main difference is in the way the
addresses are looked up: in standard polygon rendering it is looked up per
polygon, while it is looked up on a line-by-line basis in the warping approach.
  In order to reduce the required texture pixels to be looked up and rendered, it
may be possible (in both designs) to render only the part of the display the
observer is currently looking at in full resolution, while displaying other parts of
the display more at lower resolution.
  Furthermore, in both designs cheap estimation of the warping/transformation
parameters at the top level may be possible, reducing the amount of processing
power at that point. However the savings will be marginal as compared to the
texture address calculation power.



31

Calculate
warp paramÕs

Head
pos

Affine warp->
1 division
6 multiplications
for each calcul.

Address
recalculation

Address cue
(and pixel z 

value)

peak rate 
50M addresses/s
average 
5M addresses/s

Cache
manager

Sprite
memory

Z buffer

To display
DAC

Recalculate at least once each 10ms for each
3D point -> 100*[150*(16+2*8)+50*(8+6)]=
0.5Mflop

Swap buffer

<26 Mpix/s

<1300 <address, x, z-value> 
pairs per line -> 25 msec per line
At least 2 lines buffer

Projection of 3D
points: 2 divisions 
and 16 multipli-
cations for each
point

 (150  3D points)

Pixel fillrates upto 78Mpix/s (500Mb/s)
Assuming average overlap of 0.3 average 
gives an average of 8MPix/s~48Mb/s

Sprite read rates up to 
78Mb/s (250Mb/s)

50 warp parameters
Depending on warping type and
refresh rate of parameters (>100Hz)
~100Kb/s

Image
location & sizes

Sprite 
updates
<1Mb/s

at most 52M addresses/s
8 bytes/<,,> gives ~400Mb/s

<1300 pairs per 25ms and each pair requires
at least one addition->
at most ~52Mflop

<78M depth comparisons/s (78Mflop)

Figure B1. Cost estimation for the warping approach with surrounding sprites. See text.



32

Transform
vertices

300 3D 
points

Head
pos

clipping

Normalise

Z buffer

To display
DAC

Swap buffer

<26 Mpix/s

Projection requires matrix multiplication for 
each point. Recalculate at least once each 3ms 
for each 3D point. Requires 300/3m Matrix 
multipl/s= 2.8Mflops. Assume lighting not 
done here but in simplification step.

300 3D points @ 200Hz
300*12/3m~1Mb/s

~120 3D points@200Hz
12*120/3m~0.5Mb/s

Polygon fill

Three-quarter of the pixels lie outside viewing 
cone and are deleted. This test requires 6 
comparisons per point. Some (~50) new points 
are created from polygons partially behind and 
partially in front of the observer. This requires 
~1 devide, 2 multiplications for each new point.
(300*6+50*3)/3m~0.7Mflops.

Polygon buffer

Requires multiplication of x y and z by 1/w. 
assume calculating 1/w costs 8 flops->  
120 * 8 * 3/3m ~ 1Mflops.

Maximum 500Mb/s
Assuming average overlap of 0.3 average 
gives an average of 8MPix/s~48Mb/s

display properties (fixed)

~120 3D points@200Hz
12*120/5m~0.5Mb/s

Texture 
memory

Texture read rates up to 
78Mb/s (250Mb/s)

Texture updates
<1Mb/s

Upto here:
only 4.5Mflops

Up to 78Mpix/s

with affine transformation: 2 addÕs per
pixel ->  160Mflops.

Figure B2. Cost estimation for brute force polygon rendering. See text.


